
1Norah AlHammad. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.46-51

 www.ijera.com 46 | P a g e

Comparison between Test-Driven Development and Conventional

Development: A Case Study

1
Norah AlHammad,

2
Arwa AlKowiter ,

3
Lujain AlThunayan ,

 4
Nahed AlSahdi

5
Taghreed AlOtaibi

1
Tamkeen Technologies Riyadh,Saudi Arabia

2
Prince Sultan University Riyadh,Saudi Arabia

3
Hewlett Packard Enterprise Riyadh,Saudi Arabia

4
Prince Sultan University Riyadh,Saudi Arabia

5
Prince Sultan University Riyadh,Saudi Arabia

ABSTRACT
In Software Engineering, different techniques and approaches are being used nowadays to produce reliable

software. The software quality relies heavily on the software testing. However, not all developers are concerned

with the testing stage of a software. This has affected the software quality and has increased the cost as well. To

avoid these issues, researchers paid a lot of effort on finding the best technique that guarantee the software

quality. In this paper we aim to explore the effectiveness of building test cases using Test-Driven Development

(TDD) technique compared with the conventional technique (Test-last). The comparison measures the

effectiveness of test cases with regard to number of defects, code coverage and test cases development duration

between TDD and Test-Last. The results has been analyzes and presented to support the best technique. On an

average, the effectiveness of test cases with regards to the selected quality factors in Test-Driven Development

(TDD) was better than the conventional technique (Test-last). TDD and conventional testing had nearly the

same percentage as result in code coverage. Moreover, the number of defects found and the test cases

development duration spent in TDD are high compared with Test-Last. The results led to suggest some

contributions and achievement that could be gained from applying TDD technique in software industry. As

using TDD as development technique in young companies can produce high quality software in less time.

Index Terms : Test driven development, Conventional Development, Quality factors, Software Development

Styles, Unit Testing, Experimental Analysis.

I. INTRODUCTION
In today's fast moving world, the competition between

software development companies has increased and

customers tend to head to companies that provide

reliable and high software quality. Excellent software

should be completely well tested before the final

release. However, most developers are postponing test

activities until the end of the development process.

This postponing increased the overall cost of the

software. It also affected the software quality in many

levels. There were many researches and experiments

that have been conducted to address the mentioned

issues. The focus of many researches is to find the

best practice to discover errors and defects. Although

there are many testing techniques and methods are

found, two techniques have been selected for this case

study: Test-Driven Development TDD (Test-First)

and conventional testing technique (Test-Last).

The most and well-known testing methodology used is

the conventional testing technique (Test-Last), where

testing is done after developing the code. In Test-Last,

the developer ensures the code is working properly as

required. Test cases are built then to improve the code

and ensure its correctness.

On the other hand, TDD was first introduced by Kent

Beck as a development technique, which is considered

as a part of the software development agile

methodologies [1]. In TDD, test cases are created

based on the customer requirements. Developers start

writing an automated unit test case before writing any

line of code, and then they execute the test case, which

will fail at first. Then, developers start refactoring the

code by adding the required methods and

functionalities until they pass the test cases. This

mentioned cycle goes on to cover all the

functionalities that are being implemented [2].

In software testing, researchers paid a lot of effort

over which testing technique is the most effective for

the software. In conventional technique (Test-Last),

the code correctness is a high priority. Therefore, it is

certain that the requirements are fulfilled as required.

However, it does not guarantee the discovery of all

expected defects in the code. On the other hand, In

TDD the implementation of test cases in advance with

the required code for each test case has many benefits.

It helps the developers to protect the implemented

features during code refactoring. Moreover, it is

considered helpful in obtaining a regular feedback

even after any change is made (either because of

RESEARCH ARTICLE OPEN ACCESS

1Norah AlHammad. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.46-51

 www.ijera.com 47 | P a g e

changing user requirements or the change generated

from developer’s side). Moreover, it helps to reduce

overall cost and increase the quality of test cases.

However, TDD requires an experience and high

skilled developer in order to build efficient and

effective test cases. Moreover, TDD consumes time

when it is applied on small software.

In this paper we explore the effectiveness of building

test cases using Test-Driven Development (TDD)

technique compared with the conventional technique

(Test-last). The comparison will measure the

effectiveness with regard to number of defects, code

coverage and test cases development duration between

TDD and Test-Last. The results are analyzed to

support the best technique. Moreover, the outcomes

will help the developer in choosing the best practice in

unit testing.

The reminder of this paper is structured as follow.

Section II describes the literature review of papers that

were explored during this research. Section III

describes the methodology that was followed during

conducting this experiment. Section IV presents the

case study analysis and the results discussion. Finally,

Section V presents conclusion and future work.

II. BACKGROUND
In software development cycle, software testing is one

of the most important time consuming step. Unit

testing is a software testing method by which separate

units of source code are tested to determine whether

they are usable or not. There are many techniques and

approaches for software testing. The conventional

testing technique is writing test cases after completing

the full implementation. This is mainly to verify the

code is working properly. In the other hand, TDD

technique is writing test cases before writing the code.

Therefore, the only key difference between the two

techniques is the stage of testing; Test-First in TDD

and Test-Last in conventional testing technique.

Recently, researches have started to conduct studies

on the effectiveness of TDD technique compared with

conventional technique. Erdogmus and Morisio [3]

had conducted a controlled experiment with

undergraduate students for evaluating the important of

TDD. The students were asked to implement a small

functionality; a group had applied a test-first strategy,

where the other group had applied the test-last

strategy. They have found that the test-first students

were more productive due to the many test cases that

were written. They believe that applying the test-first

approach increases the requirement understanding,

reduces the scope of the task to be performed, reduces

debugging and rework effort and achieved more

consistent quality results.

Gupta and Jalote [4] had evaluated the effectiveness

and efficiency of TDD compared to conventional

technique by conducting an experiment on two groups

of students. Both groups were asked to develop a

medium sized program, where one group follows the

TDD approach, and the other follows the conventional

way for developing a program. The results of the

study showed that TDD approach is more efficient as

it required less development effort and more

productivity for the developers. The code quality was

affected too by the testing effort applied by using

TDD. They have noticed that the developers may

prefer a modified TDD in which some upfront

designing is done before developing the code using

TDD.

Another structured experiment was conducted by

Muller and Hagner [5] to compare TDD with

traditional programming on 19 students. The main

purpose was to measure the effectiveness of TDD in

terms of development time, program reliability and

understandability. They have observed that TDD

programmers reuse existing methods fast and

accurate, as well as an increased reliability. However,

the programming time was neither efficient nor faster

as expected.

Williams, Maximillien and Vouk [6] have run a case

study at IBM where they have transitioned from an

adhoc technique to a TDD unit testing technique.

They have found that the developed code using TDD

during functional verification and regression test,

showed approximately 40% fewer defects in the code

comparing to the code developed in a more traditional

technique. Moreover the TDD technique will support

the future enhancements, reusability, maintenance and

the quality of the code. However, the productivity was

not impacted by the focus on producing automated

test cases. As TDD is an advance technique that uses

an automated test cases that can be run at any time, to

ensure that the software is still working properly.

Moreover, Janzen and Saiedian [7] have conducted a

study to collect evidence regarding the TDD influence

on software. They have found that developers

implementing TDD tend to write software in smaller

less complex units and well tested. In the other hand,

Causevic, Sundmark and Punnekkat [8] have

conducted a systematic literature review on empirical

studies focusing on TDD limitations. They have

identified several limitations such as increased

development time, lack of TDD

experience/knowledge and lack of developers’ skills

in writing test cases.

III. METHODOLOGY
We conduct a case study where two programmers are

asked to develop and test some functions related to

objected-oriented programming. The first participant

is responsible to test these functions by applying the

TDD technique. Where the other participant is

responsible to test the same functions by applying the

conventional technique (Test-Last), which creates test

cases after developing the code. The main focus of

this experiment is to compare some quality attributes

1Norah AlHammad. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.46-51

 www.ijera.com 48 | P a g e

such as: number of defects, code coverage and test

cases development duration between TDD with the

conventional technique, and document the results and

outcomes of the comparison. This section describes

how the case study is designed and applied. Moreover,

specific details regarding the case study are explained

below.

A. Quality

In this study, we have selected specific quality factors

to evaluate. These factors play an important role in the

effectiveness of the test cases. Also, they are

considered significant aspects in the software

development life cycle. The software quality can be

measured using many different attributes. The selected

quality factors are:

1) Number of defects

An indicator of the defects number found in each

function.

2) Code Coverage

A measure used to describe how much the source code

is covered and tested by a particular test case.

3) Duration

A measure of the time spent to develop the test cases.

B. Environment and Tools

In this case study, we use an object oriented

programming language (Java) to develop the functions

using Eclipse [9]. Eclipse is a Java based open source

platform that allows a software developer to create an

integrated development environment (IDE). In order

to write and execute test cases we use JUnit [10].

JUnit is an open source framework that has a

graphical user interface (GUI), it shows a test progress

bar in Eclipse. After completely finalizing the

implementation, we install a tool called EclEmma [11]

for code coverage. EclEmma is a free Java code

coverage tool for Eclipse that used as an indicator on

how much the tests case cover the source code for

each function.

C. Experiment Design

The study has been applied by two participants; the

first participant is a software developer with a three

years’ experience. The second participant is a services

integration tester with a three years’ experience. Each

participant is assigned to implement and test the same

specific functions. These specific functions are used to

calculate statistics formulas, which are: Mean, Median

and Standard Deviation. The first participant is

responsible to test and develop each function using

TDD technique. Where the other participant is

responsible to develop and test the same functions

using Test-Last technique. During this experiment,

each participant has developed and implemented the

test cases with regard to the quality factors mentioned

in section (A) above. The results are then collected

and analyzed for each quality factor. Finally, we have

presented our viewpoint and interpretation from the

case study. “Figure 1”illustrate the methodology used

during the case study.

Fig. 1. Methodology used in the case study

IV. RESULTS AND DISCUSSION

A. Results Analysis

The results are viewed for both TDD and Test-Last for

each function with regard to each quality factor.

Table I represents the number of test cases generated

for each function by each participant. The first

participant developed 14 test cases, which is more

than the second participant that develop only 4 test

cases. The reason behind the difference is that the first

participant, who followed TDD technique, was

writing test case first, which drove the participant to

write more code and run the tests for it. So, many test

cases kept rising during writing the code. The first

participant was forced to think as a tester and develop

the function correctly accordingly. As for the second

participant, who followed the Test-Last technique,

started writing the test cases after finishing the

functions’ development. The second participant’s

focus was only to confirm each function is working

properly and that it is doing what it is required to.

TABLE I. NUMBER OF TEST CASES

 Participant 1

Test Driven

Development

(TDD)

Participant 2

Test-Last

Number of test

cases

Number of test

cases

Function 1

(Mean)

5 Test Cases

1 Test Cases

Function 2

(Median)

4 Test Cases

2 Test Cases

Function 3

(Standard

Deviation)

5 Test Cases

1 Test Cases

Total 14 4

1Norah AlHammad. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.46-51

 www.ijera.com 49 | P a g e

Table II lists the duration time needed for each

participant to fully implement the functions. The

duration includes both testing and coding time. The

first participant consumed 192 minutes to complete all

the functions, which is considered higher than the

second participant that consumed 144 minutes for all

the functions. The reason behind the variance is that

the number of test cases generated for each function

was totally different. For example, the first function in

TDD, 5 test cases took 63 minutes to complete the

function. While in Test-Last, it took 37 minutes to

develop the function and the test case. Therefore, the

time variance between the two participants was based

on number of test cases, and the time spent handling

each case.

TABLE II. DURATION OF DEVELOPMENT TIME FOR

EACH TEST CASE

Table III lists the total number of failing assertions

found in each test case for each participant. The total

number of defects discovers by the first participant are

56 defects. Where the second participant discovered

21 defects. If we look at function 2 for the first

participant, there were a total of 14 failed assertions

for the 4 test cases during the code. However, the

other participant detected 8 failed assertions for the 2

test cases. Clearly, the more test cases generated, the

more defects are being detected.

TABLE III. NUMBER OF DEFECTS FOR EACH TEST

CASE

Table IV lists the code coverage (score in percentage)

for covered instructions and missed instructions for

each participant. Code coverage is calculated by

dividing the covered instructions by the summation of

the covered instructions and missed instructions. The

result is multiplied by 100 to calculate the percentage.

Below is the formula for code coverage: Code

coverage in % = [Covered instructions / (Covered

instructions+ Missed instructions)]* 100 we have

found that the coverage that was achieved by both

participants is nearly the same, regardless of the

technique they have used. This makes it difficult to

distinct a difference in the effectiveness between the

two techniques.

TABLE IV. CODE COVERAGE FOR EACH TEST CASE

1Norah AlHammad. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.46-51

 www.ijera.com 50 | P a g e

B. Interpretation

As a result of comparing Test-Driven-Development

technique with the conventional technique Test-Last,

several remarks have been observed. The participant

who applied the conventional technique (Test-Last)

has reported some points. One is that applying Test-

Last has ensured that the requirements for each

function are well understood by the participant before

testing has started. In addition, the participant was

focusing on ensuring the correctness of code before

moving to testing stage. Therefore, the creditability of

the functions is guaranteed first, then test cases can be

built and code can be improved accordingly.

 On the other hand, the participant who applied TDD

technique has noticed many changes too during the

development. One is that TDD has forced the

developer to simplify the code and write code based

on the requirement of the tests only. In addition, the

participant who applied TDD was developing the

function by following clear steps, since writing the

code is done during the testing. Moreover, since test

cases are written before the code, code coverage is

ensured at least one for each function. Moreover, we

have noticed that the number of defects and test cases

development duration spent in TDD are considered

high compared with Test-Last. However, in the future

when a change is made to the software, all what the

developer has to do is run the existing test cases to test

if the change has impacted any other pieces of the

software. Hence, for the long term it could take less

time in coding and debugging, and less defects might

be found for any future integration or any change.

Therefore, this finding could support software

maintainability, which is one of the most remarks of

TDD that it is considered beneficial in future is

software maintainability. The reason is that when the

software has an update, it could be done easily by just

developing a new test case. This assures the ability of

making changes fast without interfering any other

piece of the software. This could help young

companies whose looking up for rapid growth. As

using TDD as development technique in young

companies can produce high quality software in less

time. However, during conducting the experiment, it

has been noticed that TDD requires an experience and

high skills on building test cases before the code. So

beginner programmers might face difficulties with

TDD compared with conventional technique.

V. CONCLUSION AND FUTURE WORK
In software development cycle, software testing is one

of the most important time consuming step. Unit

testing is a software testing method by which separate

units of source code are tested to determine whether

they are usable or not. The most well known method

is the conventional technique (Test-Last), where

building test cases are done after developing the code.

Another method is Test-Driven Development (TDD),

which is one of the most advanced techniques and

mostly known in agile methodologies. In TDD, Test

cases are built before and during code development. In

this paper, we have explored the effectiveness of

building test cases using Test-Driven Development

(TDD) technique compared with the conventional

technique (Test-last). The comparison measures the

effectiveness with regard to number of defects, code

coverage and test cases development duration between

TDD and Test-Last. The aim is to determine the best

technique and approach when developing software

with regards to effectiveness of test cases. The main

findings of the analysis are the following: we have

found that TDD and conventional testing had nearly

the same percentage as result in code coverage.

Moreover, the number of defects found and the test

cases development duration spent in TDD are high

compared with Test-Last. However, for the long term

it could take less time and less defects might be found

for any future integration or any change. However,

TDD requires more experience and has less code

correctness compared with conventional technique.

In a future work for a long-term study, it is

recommended to expand the experiment to cover more

participants and apply it on a large system or a web

application. Moreover, it will be more useful to

conduct a fully controlled experiment with higher

number of participant in order to investigate the

effectiveness of TDD with integration and validation

testing. This is to help long-term organizational plans

to reduce the effort and cost.

ACKNOWLEDGMENT
We are greatly thankful to the faculty of Software

Engineering department in Prince Sultan University,

Especially Dr. Sharifa Al-Ghowinem for her

guidance, valuable comments, and support in

overcoming the hurdles in the completion of this

research.

At last but not the least, we also thank Ms. Ghada

Hader for her co-operation and encouragement in

successfully completing this research.

REFERENCES
[1] Agarwal, N and Deep, P., “Obtaining Better

Software Product by Using Test First

Programming Technique”, 5th International

Conference on Confluence The Next

Generation Information Technology Summit

(Confluence), 2014, Pages: 742 – 747

[Online]. Available:

http://ieeexplore.ieee.org.ezproxy.psu.edu.sa

/stamp/stamp.jsp?tp=&arnumber=6949233

[2] Karamat, T and Jamil, A.N., “Reducing Test

Cost and Improving Documentation In TDD

(Test Driven Development)”, Seventh ACIS

International Conference on Software

Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed

http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=6949233
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=6949233

1Norah AlHammad. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 3) May 2016, pp.46-51

 www.ijera.com 51 | P a g e

Computing-, 2006, Pages: 73 – 76, [Online].

Available:

http://ieeexplore.ieee.org.ezproxy.psu.edu.sa

/stamp/stamp.jsp?tp=&arnumber=1640669

[3] Erdogmus, H.; Morisio, Maurizio;

Torchiano, Marco, “On the Effectiveness of

the Test-First Approach to Programming”,

Software Engineering, IEEE Transactions,

2005, Pages: 226 - 237, [Online]. Available:

http://ieeexplore.ieee.org.ezproxy.psu.edu.sa

/stamp/stamp.jsp?tp=&arnumber=1423994

[4] Gupta, A.; Jalote, P., “An Experimental

Evaluation of the Effectiveness and

Efficiency of the Test Driven Development”,

First International Symposium on Empirical

Software Engineering and Measurement,

2007, Pages: 285 - 294, [Online]. Available:

http://ieeexplore.ieee.org.ezproxy.psu.edu.sa

/stamp/stamp.jsp?tp=&arnumber=1423994

[5] Muller, M.M.; Hagner, O., “Experiment

about test-first programming”, 2002, Pages:

131- 136, [Online]. Available:

http://ieeexplore.ieee.org.ezproxy.psu.edu.sa

/stamp/stamp.jsp?tp=&arnumber=1049202

[6] Williams, L.; Maximilien, E.M.; Vouk, M.,

“Test-Driven Development as a Defect-

Reduction Practice”, 14th International

Symposium on Software Reliability

Engineering, 2003, Pages: 34 - 45, [Online].

Available:

http://ieeexplore.ieee.org.ezproxy.psu.edu.sa

/stamp/stamp.jsp?tp=&arnumber=1251029

[7] Janzen, D.S.; Saiedian, H., “Does Test-

Driven Development Really Improve

Software Design Quality?”, 2003, Pages: 34

- 45, [Online]. Available:

http://ieeexplore.ieee.org.ezproxy.psu.edu.sa

/stamp/stamp.jsp?tp=&arnumber=4455636

[8] Causevic, A.; Sundmark, Daniel; Punnekkat,

S., “Factors Limiting Industrial Adoption of

Test Driven Development: A Systematic

Review”, IEEE Fourth International

Conference on Software Testing,

Verification and Validation (ICST),

2011,Pages: 337 - 346, [Online]. Available:

http://ieeexplore.ieee.org.ezproxy.psu.edu.sa

/stamp/stamp.jsp?tp=&arnumber=5770623

[9] Eclipse, http://www.eclipse.org

[10] jUnit Framework, http://www.junit.org

[11] EclEmma - Java Code Coverage for Eclipse,

http://www.eclemma.org

http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=1640669
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=1640669
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=1423994
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=1423994
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=1423994
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=1423994
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=1049202
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=1049202
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=1251029
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=1251029
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=4455636
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=4455636
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=5770623
http://ieeexplore.ieee.org.ezproxy.psu.edu.sa/stamp/stamp.jsp?tp=&arnumber=5770623
http://www.eclipse.org/
http://www.junit.org/
http://www.eclemma.org/

